CHEMBIOCHEM

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2009

Supporting Information

for

Development of Ratiometric Fluorescent Probes for Phosphatases by Using a p K_a Switching Mechanism

Shin Mizukami, Shuji Watanabe, and Kazuya Kikuchi*

Index	
General Information	S2
Probe Synthesis	S3
Synthetic schemes (Schemes S1 and S2)	S10
¹ H NMR and ¹³ C NMR of I	S11
¹ H NMR and ¹³ C NMR of II	S12
¹ H NMR and ¹³ C NMR of III	S13
¹ H NMR and ¹³ C NMR of 1	S14
¹ H NMR and ¹³ C NMR of 6	S15
¹ H NMR and ¹³ C NMR of 7	S16
¹ H NMR and ¹³ C NMR of 9	S17
¹ H NMR and ¹³ C NMR of 10	S18
¹ H NMR and ¹³ C NMR of 11	S19
¹ H NMR and ¹³ C NMR of 3a	S20
¹ H NMR and ¹³ C NMR of 3b	S21
¹ H NMR and ¹³ C NMR of 12	S22
¹ H NMR and ¹³ C NMR of 13	S23
¹ H NMR and ¹³ C NMR of 4a	S24
¹ H NMR and ¹³ C NMR of 4b	S25
¹ H NMR and ¹³ C NMR of 15	S26
¹ H NMR and ¹³ C NMR of 5a	S27
¹ H NMR and ¹³ C NMR of 5b	S28
Reversed-phase HPLC Measurements of 3a Hydrolysis with ACP (Figure S1)	S29
Inhibition Assay of ALP with 3b (Figure S2)	S29

General Information

In general, reactions were carried out in a flame-dried glassware under an argon atmosphere using standard inert atmosphere techniques. Solvents and reagents were obtained from commercial sources unless otherwise noted. PTP1B and CD45 were purchased from BIOMOL Research Laboratories Inc. Acid phosphatase (ACP), alkaline phosphatase (ALP), and PP1 were purchased from Sigma-Aldrich. PP2A1 was purchased from CALBIOCHEM. Synthesized probes were dissolved in DMSO (biochemical grade) before fluorescence measurement.

NMR spectra were recorded at 270 or 400 MHz for NMR and at 67.5 or 100 MHz for 13 C NMR, using tetramethylsilane as an internal standard. Excitation and emission spectra of the synthesized compounds were measured at 1 μ M in 100 mM HEPES buffer (pH 7.4) at 25 °C. Each sample contained less than 0.1% DMSO as a cosolvent. Fluorescence quantum yields of the synthesized compounds were estimated by a relative method with reference to a fluorescence standard, quinine sulfate (Φ = 0.55 in 0.05 M H₂SO₄ aq.). [S1] The pH profiles of the synthesized compounds were evaluated by measuring the fluorescence intensities (λ _{ex} = 380 nm, λ _{em} = 470 nm) in 100 mM sodium phosphate buffer at each pH at 25 °C.

All enzymatic reactions were performed in a quartz cuvette at 30 °C. Synthesized probes were dissolved at 10 \square M in a reaction buffer (50 mm HEPES (pH 7.4), 1 mm EDTA, 1 mm DTT, 0.05% NP-40 for CD45 and PTP1B; 25 mm imidazole (pH 7.4), 0.1 mg/mL BSA, 1mm DTT, 50 mm NaCl for PP1; 100 mm HEPES (pH7.4), 1 mm EDTA, 1 mm DTT for PP2A1, ALP, and ACP). The excitation spectra (λ_{ex} = 380 nm) were measured before and after the addition of the enzyme solution.

Kinetic parameters such as $K_{\rm m}$ and $V_{\rm max}$ were determined by plotting the initial reaction velocity against the probe concentration and fitting the plot to the Michaelis-Menten equation. The initial velocities were evaluated from measurements of the absorbance at 380 nm or the fluorescence intensity ($\lambda_{\rm ex} = 380$ nm, $\lambda_{\rm em} = 470$ nm) in 100 mm HEPES (pH 7.4) containing 1.0 mm DTT and EDTA.

Probe Synthesis

7-Hydroxy-8-methyl-2-oxo-2H-1-benzopyran (*I*): 2-Methylresorcinol (1.0 g, 8.06 mmol) and conc. H₂SO₄ (one drop) were added to propiolic acid (1.13 g, 16.1 mmol). The mixture was stirred at 120 °C for 15 min and solids appeared. The solid was washed with saturated NaHCO₃ aq. and water. This compound was recrystallized from MeOH to afford *I* (700 mg, y. 50%). ¹H NMR (400 MHz, [D₆]DMSO) δ 2.15 (s, 3H), 6.19 (d, 1H, J = 9.6 Hz), 6.84 (d, 1H, J = 8.8 Hz),7.37 (d, 1H, J = 8.8 Hz),7.92 (d, 1H, J = 9.6 Hz), 10.5 (s, 1H); ¹³C NMR (100 MHz, [D₆]DMSO) δ 7.8, 110.6, 110.7, 111.2, 111.9, 126.2, 144.7, 153.3, 158.9, 160.5; HRMS (ESI⁺) m/z: 177.0579 (calcd for M⁺ (C₁₀H₈O₃): 177.0552).

7-Methoxymethoxy-8-methyl-2-oxo-2H-1-benzopyran (II): 7-Hydroxy-8-methyl-2-oxo-2H-1-benzopyran I (1.0 g, 5.68 mmol) was dissolved in dry DMF (10 mL), then diiso-propylethylamine (1.49 g, 11.5 mmol) and methoxymethyl chloride (925 mg, 11.5 mmol) were added. The mixture was stirred at 0 °C for 3 h under Ar. The reaction mixture was diluted with diethylether and washed with sat. citric acid aq., 2 м NaOH aq., water, and brine. After evaporation, the residue was purified with silica gel chromatography, eluted with CH₂Cl₂ to afford II (720 mg, y. 58%). ¹H NMR (270 MHz, CDCl₃) δ 2.33 (s, 3H), 3.50 (s, 3H), 5.28 (s, 2H), 6.26 (d, 1H, J = 9.4 Hz),7.03 (d, 1H, J = 8.6 Hz),7.25 (d, 1H, J = 8.6 Hz),7.63 (d, 1H, J = 9.4 Hz); ¹³C NMR (67.5 MHz, CDCl₃) δ 8.3, 56.3, 94.4, 110.3, 113.3, 113.4, 115.1, 125.7, 143.6, 153.1, 158.0, 161.3; HRMS (EI⁺) m/z: 220.0730 (calcd for M⁺ (C₁₂H₁₂O₄): 220.0736).

7-Methoxymethoxy-8-bromomethyl-2-oxo-2H-1-benzopyran (III): 7-Methoxymethoxy-8-methyl-2-oxo-2H-1-benzopyran II (590 mg, 1.97 mmol) and *N*-Bromosuccinimide (590 mg, 2.34 mmol) was suspended in CCl₄ (25 mL). Then catalytic amount of AIBN (10 mg) was added and refluxed for 3 h. The organic layer was washed with water, and dried over brine and sodium sulfate. After evaporation, the residue was purified with silica gel chromatography, eluted with CH₂Cl₂ to afford III (400 mg, y. 68%). ¹H NMR (270 MHz, CDCl₃) δ 3.51 (s, 3H), 4.79 (s, 2H), 5.34 (s, 2H), 6.30 (d, 1H, J = 9.6 Hz),7.06 (d, 1H, J = 8.9 Hz),7.39 (d, 1H, J = 8.9 Hz),7.63 (d, 1H, J = 9.6 Hz); ¹³C NMR (67.5 MHz, CDCl₃) δ 20.4, 56.7, 94.3, 110.4, 113.4, 113.9, 114.9, 128.8, 143.2, 152.7, 157.7, 160.2; HRMS (CI⁺) m/z. 298.9922 (calcd for [M+H]⁺ (C₁₂H₁₂BrO₄): 298.9919).

7-Hydroxy- 8-phosphonomethyl-2-oxo-2H-1-benzopyran (1): 7-Methoxymethoxy-8bromomethyl-2-oxo-2*H*-1-benzopyran **III** (300 mg, 1.00 mmol) was dissolved in trimethylphosphite (5 mL), and stirred at 90 °C for 2 h. After evaporation, the crude 7-Methoxymethoxy-8-(dimethoxyphosphorylmethyl)-2-oxo-2*H*-1-benzopyran (**IV**) (300 mg, 0.91 mmol) was dissolved in dry CH₂Cl₂ (10 mL), and TMSBr (1.40 g, 9.10 mmol) was added dropwise at 0 °C under Ar. After removing the solvent, the resulting crude silyl ester was dissolved in MeOH (10 mL), and the solution was stirred for 1 h at RT. After evaporation, the residue was purified with RP-HPLC, eluted with 100 mм triethylamine-acetic acid (TEAA) buffer (pH = 6.5) to yield 1 as a triethylammonium salt (80 mg, y. 22% (2 steps)). ¹H NMR (270 MHz, D₂O) δ 1.13 (t, 9H, J = 7.2 Hz),3.05 (q, 6H, J = 7.2 Hz), 3.10 (d, 2H, J = 21.0 Hz),6.15 (d, 1H, J = 9.4 Hz),6.80 (d, 1H, J = 8.6 Hz), 7.30 (d, 1H, J = 8.6 Hz), 7.81 (d, 1H, J = 9.4 Hz); ¹³C NMR (67.5 MHz, CD₃OD) δ 25.6 (d, J_{C-P} = 83.9 Hz), 47.5, 111.9, 112.6 (two carbon), 113.7 (two carbon), 116.3, 116.4, 146.4, 154.4, 154.5, 161.9 (two carbon), 163.6; MS (CI⁺) m/z. 358.1 $[M+H]^+$; E. A.: C, 53.41; H, 6.73; N, 3.94 (calcd for $C_{17}H_{26}NO_7P$: C, 53.78; H, 6.77; N, 3.92).

7-Allyloxy-2-oxo-2H-1-benzopyran (**6**): 7-Hydroxycoumarin (1.0 g, 6.2 mmol) and K_2CO_3 (1.2 g, 8.6 mmol) was suspended in acetone (30 mL). The mixture was refluxed for 2 h under Ar. After cooled, inorganic salt was filtrated off. After evaporation of the filtrate, the product was purified with silica gel chromatography, eluted with CH_2CI_2 to afford **6** (1.20 g, y. 96%). ¹H NMR (270 MHz, CDCI₃) δ 4.61 (d, 2H, J = 5.1 Hz), 5.34 (dd, 1H, J = 10.5 Hz , 1.5 Hz), 5.44 (dd, 1H, J = 17.5 Hz, 1.5 Hz),6.01 (m, 1H),6.25 (d, 1H, J = 9.7 Hz),6.83 (s, 1H),6.85(d, 1H, J = 8.6 Hz),7.36 (d, 1H, J = 8.6 Hz),7.63(d, 1H, J = 9.7 Hz); ¹³C NMR (67.5 MHz, CDCI₃) δ 69.3, 101.7, 112.6, 113.0, 113.1, 118.5, 128.6, 132.0, 143.2, 155.6, 161.0, 161.6; MS (CI⁺) m/z: 203 [M+H]⁺; E. A.: C, 71.17; H, 4.98 (calcd for $C_{12}H_{10}O_3$: C, 71.28; H, 4.98).

7-Hydroxy- 8-allyl-2-oxo-2H-1-benzopyran (**7**): 7-Allyloxy-2-oxo-2H-1-benzopyran **6** (1.0 g, 27.2 mmol) was dissolved in *N*,*N*-diethyl aniline (60 mL) and refluxed for 3 h at 220 °C under Ar. After cooling to 0 °C, *n*-hexane (50 mL) was added for precipitating the product. The precipitate was filtered, washed with *n*-hexane, and recrystallized from ethyl acetate to yield light yellow crystals of **7** (2.7 g, y. 50%). ¹H NMR (270 MHz, CDCl₃) δ 3.67 (d, 2H, J = 5.1 Hz); 5.14-5.24 (m, 2H,), 5.89 (s, 1H), 6.01 (m, 1H), 6.25 (d, 1H, J = 9.5 Hz),6.81(d, 1H, J = 8.4 Hz),7.26 (d, 1H, J = 8.4 Hz),7.63 (d, 1H, J

= 9.5 Hz); ¹³C NMR (67.5 MHz, [D₆]DMSO) δ 26.2, 110.7, 111.1, 112.0, 113.0, 114.8, 126.9, 135.0, 144.6, 152.9, 158.6, 160.1; MS (CI⁺) m/z: 203 [M+H]⁺; E. A.: C, 71.14; H, 5.03 (calcd for C₁₂H₁₀O₃: C, 71.28; H, 4.98).

7-Methoxymethoxy- 8-allyl-2-oxo-2H-1-benzopyran (9): 7-Hydroxy-8-allyl-2-oxo-2H-1-benzopyran 7 (300 mg, 1.48 mmol) was dissolved in dry DMF (10 mL), then diisopropylethylamine (239 mg, 2.97 mmol) and methoxymethyl chloride (384 mg, 2.97 mmol) were added. The mixture was stirred at 0 °C for 3 h under Ar. The reaction mixture was diluted with diethyl ether and washed with sat. citric acid aq., 2 м NaOH aq., water, and brine. After evaporation, the residue was purified with silica gel chromatography, eluted with CH₂Cl₂ to afford **9** (340 mg, y. 93%). ¹H NMR (270 MHz, CDCl₃) δ 3.49 (s, 3H), 3.63 (d, 2H, J = 5.9 Hz), 4.98-5.01 (m, 2H), 5.28 (s, 2H), 5.97 (m, 1H),6.26 (d, 1H, J = 9.2 Hz),7.06 (d, 1H, J = 8.4 Hz),7.29 (d, 1H, J = 8.4 Hz),7.63 (d, 1H, J = 9.2 Hz); ¹³C NMR (67.5 MHz, CDCl₃) δ 27.1, 56.4, 94.2, 110.4, 113.5 (two cabons), 115.3, 116.8, 126.5, 134.9, 143.6, 152.9, 157.7; MS (CI⁺) m/z: 247 [M+H]⁺; E. A.: C, 68.22; H, 5.39 (calcd for C₁₄H₁₄O₄: C, 68.28; H, 5.73).

7-Methoxymethoxy-8-(2-oxoethyl)-2-oxo-2*H***-1-benzopyran (10)**: 7-Methoxymethoxy-8-allyl-2-oxo-2*H*-1-benzopyran **9** (1.0 g, 4.07 mmol) was dissolved in THF (50 mL), then OsO₄ in water (3 mL of 1.5% (w/w) in water, 0.4 mmol) was added to the mixture and stirred for 1 h at RT under Ar. Then NalO₄ (5.5 g, 24 mmol) was added in 3 portions and stirred at RT for 12 h. THF was removed and diluted with water and extracted with CH₂Cl₂. The extracts were dried over brine and sodium sulfate. After evaporation, the residue was chromatographed on silica gel, eluted with CH₂Cl₂/ethyl acetate (9:1) to afford **10** (650 mg, y. 65%). ¹H NMR (270 MHz, CDCl₃) δ 3.45 (s, 3H), 4.02 (s, 2H), 5.26 (s, 2H), 6.28 (d, 1H, J = 9.2 Hz), 7.11 (d, 1H, J = 8.4 Hz), 7.40 (d, 1H, J = 8.4 Hz), 7.66 (d, 1H, J = 9.2 Hz), 9.78 (s, 1H); ¹³C NMR (67.5 MHz, CDCl₃) δ 38.1, 56.5, 94.4, 110.0, 110.3, 113.5, 113.7, 127.9, 143.5, 153.1, 158.2, 160.4, 197.5; MS (CI⁺): 249 [M+H]⁺; E. A.: C, 62.80; H, 4.73 (calcd for C₁₃H₁₂O₅: C, 68.90; H, 4.87).

7-Methoxymethoxy-8-(2-hydroxyethyl)-2-oxo-2H-1-benzopyran (11): NaBH₄ (20 mg, 0.48 mmol) was suspended in dry THF (20 mL) at 0 °C under Ar. Then, 7-methoxymethoxy-8-(2-oxoethyl)-2-oxo-2H-1-benzopyran 10 (100 mg, 0.41 mmol) solution in THF (5 mL) was added dropwise. The mixture was stirred for 1 h, and quenched with sat. citric acid aq. (5 mL). THF was removed and the residue was diluted with water,

then extracted with CH₂Cl₂. After evaporation, the residue was purified with silica gel chromatography, eluted with CH₂Cl₂/ethyl acetate (1:1) to afford **11** (76 mg, y. 75%). ¹H NMR (270 MHz, CDCl₃) δ 3.19 (t, 2H, J = 6.8 Hz), 3.50 (s, 3H),3.88 (t, 2H, J = 6.8 Hz), 5.30 (s, 2H),6.28 (d, 1H, J = 9.2 Hz),7.08 (d, 1H, J = 8.4 Hz),7.32 (d, 1H, J = 8.4 Hz),7.64 (d, 1H, J = 9.2 Hz); ¹³C NMR (67.5 MHz, CDCl₃) δ 26.5, 56.4, 61.8, 94.4, 110.5, 113.4, 113.6, 115.6, 126.9, 143.9, 153.4, 158.3, 161.3; HRMS (EI⁺) m/z: 250.0845 (calcd for M⁺ (C₁₃H₁₄O₅): 250.0841).

7-Hydroxy-8-(2-phosphoethyl)-2-oxo-2H-1-benzopyran (3a, PEHC): POCl₃ (307 mg, 2.0 mmol) and triethylamine (405 mg, 4.0 mmol) were dissolved in dry THF (10 mL). 7-Methoxymethoxy-8-(2-hydroxyethyl)-2-oxo-2*H*-1-benzopyran **11** (100 mg, 0.41 mmol) in THF (5 mL) was added dropwise at 0 °C under Ar. The mixture was stirred for 2 h, and quenched with 1 M NaHCO₃ aq. (10 mL). The reaction mixture was stirred for 1 h at RT, then NaHCO₃ was filtered off and washed with THF. After evaporation of the filtrate, MeOH (10 mL) was added to the residue oil and stirred for 2 h at 40 °C. After evaporation, the residue was purified with RP-HPLC, eluted with 100 mm triethylamine-acetic acid (TEAA) buffer (pH = 6.5) to yield **3a** as a triethylammonium salt (30 mg, y. 20%). ¹H NMR (270 MHz, D_2O) δ 1.12 (t, 9H, J = 7.6Hz),2.98 (t, 2H, J = 6.8 Hz),3.06 (q, 6H, J = 7.3 Hz),3.91 (q, 2H, J = 7.0 Hz),6.05 (d, 1H, J = 9.2 Hz),6.77 (d, 1H, J = 8.4 Hz),7.26 (d, 1H, J = 8.4 Hz), 7.77 (d, 1H, J = 9.2Hz); ¹³C NMR (67.5 MHz, CD₃OD) δ 9.2, 25.6 (d, J = 7.5 Hz), 47.4, 64.5 (d, J = 5.4Hz), 111.8, 113.1 (two carbons), 113.9, 128.3, 146.3, 155.2, 161.3, 163.5; MS (FAB⁺) m/z: 388.2 [M+H]⁺; E. A.: C, 52.43; H, 6.77; N, 3.65 (calcd for C₁₇H₂₆NO₇P: C, 52.71; H, 6.77; N, 3.62).

7-Hydroxy-8-(2-hydroxyethyl)-2-oxo-2H-1-benzopyran (**3b**, HEHC): 7-Methoxymethoxy-8-(2-hydroxyethyl)-2-oxo-2H-1-benzopyran **11** (50 mg, 0.2 mmol) was dissolved in CH₂Cl₂ (10 mL) at 0 °C under Ar. TMSBr (122 mg, 0.8 mmol) was added dropwise. The mixture was stirred for 4 h. After evaporation of the CH₂Cl₂, the residue was purified with RP-HPLC, eluted with 100 mM TEAA buffer (pH = 6.5) to afford **3b** (10 mg, yield 24%). ¹H NMR (270 MHz, CD₃OD) δ 3.09 (t, 2H, J = 7.3 Hz),3.74 (t, 2H, J = 6.8 Hz),6.17 (d, 1H, J = 9.2 Hz),6.81 (d, 1H, J = 8.4 Hz),7.32 (d, 1H, J = 8.4 Hz), 7.83 (d, 1H, J = 9.2 Hz); ¹³C NMR (67.5 MHz, CD₃OD) δ 27.3, 61.7, 111.8, 113.2, 113.6, 113.7, 128.2, 146.4, 155.1, 161.1, 163.7; HRMS (EI⁺) m/z: 206.0576 (calcd for M⁺ (C₁₁H₁₀O₄): 206.0579).

7-Methoxymethoxy- 6-allyl-2-oxo-2H-1-benzopyran (12): 7-Allyloxy-2-oxo-2H-1-benzopyran **6** (5.5 g, 27.2 mmol) was dissolved in N,N-diethylaniline (60 mL) and refluxed for 3 h at 220 °C under Ar. After cooling to 0 °C, n-hexane (50 mL) was added, then the precipitate was filtered, washed with hexane, and evaporated to give crude product **8**. The crude **8** (2.00 g, 9.90 mmol) was dissolved in DMF (10 mL), then disopropylethylamine (1.56 g, 19.8 mmol) and methoxymethyl chloride (2.56 g, 19.8 mmol) were added. The mixture was stirred for 3 h at 0 °C under Ar. The reaction mixture was diluted with diethyl ether and washed with sat. citric acid aq., 2 M NaOH, water and brine. After evaporation, the residue was purified with silica gel chromatography, eluted with CH_2CI_2 , then CH_2CI_2 : ethyl acetate (1:1) to afford 12 (600 mg, y. 9% (2 steps)). ¹H NMR (CDCI₃, 270 MHz) δ 3.41 (d, 2H, J=6.5 Hz), 3.48 (s, 3H), 5.03-5.11 (m, 2H), 5.26 (s, 2H), 5.97 (m, 1H), 6.26 (d, 1H, J = 9.5 Hz), 7.05 (s, 1H), 7.23 (s, 1H), 7.61 (d, 1H, J = 9.5Hz); ¹³C NMR (100 MHz, CDCI₃) δ 33.7, 56.3, 94.3, 101.7, 112.8, 113.4, 116.2, 126.3, 128.2, 135.9, 143.3, 154.2, 157.8, 161.2; HRMS (EI⁺) m/z: 246.0892 (calcd for M⁺ (C₁₄H₁₄O₄): 246.0886).

7-Methoxymethoxy-6-(2-oxoethyl)-2-oxo-2H-1-benzopyran (13): 7-Methoxymethoxy-6-allyl-2-oxo-2H-1-benzopyran 12 (400 mg, 1.63 mmol) was dissolved in THF (50 mL), then OsO₄ (3 mL of 1.5% (w/w) in water, 0.16 mmol) was added and stirred for 1 h at RT under Ar. Then, NaIO₄ (2.2 g, 9.6 mmol) was added in 3 portions and stirred at RT for 12 h. After evaporation of THF, the residue was diluted with water and extracted with CH₂Cl₂. After evaporation of the CH₂Cl₂, the residue was purified with silica gel chromatography, eluted with CH₂Cl₂/ethyl acetate (9:1), to afford 13 (186 mg, y. 46%). ¹H NMR (400 MHz, CDCl₃) δ 3.45 (s, 3H),3.75 (s, 2H),5.25 (s, 2H),6.27 (d, 1H, J = 9.5 Hz),7.10 (s, 1H),7.28 (s, 1H),7.62 (d, 1H, J = 9.5 Hz), 9.75 (s, 1H); ¹³C NMR (100 MHz, CD₃CN) δ 45.2, 56.8, 95.2, 102.4, 113.9, 114.5, 120.8, 131.4, 144.4, 155.8, 158.8, 161.2, 200.2; HRMS (EI⁺) m/z: 248.0685 (calcd for M⁺ (C₁₃H₁₂O₅), 248.0680).

7-Methoxymethoxy-6-(2-hydroxyethyl)-2-oxo-2H-1-benzopyran (14): NaBH₄ (28 mg, 0.67 mmol) was suspended in THF (20 mL) at 0 $^{\circ}$ C under Ar. Then, 7-methoxymethoxy-8-(2-oxoethyl)-2-oxo-2H-1-benzopyran 13 (150 mg, 0.61 mmol) dissolved in THF (5 mL) was added dropwise. The mixture was stirred for 40 min, and quenched with sat. citric acid aq. (5 mL). After evaporation of THF, the residue was diluted with water and extracted with CH₂Cl₂. After evaporation, the residue was purified with silica

gel chromatography, eluted with CH_2Cl_2 /ethyl acetate (1:1) to afford **14** (56 mg, y. 30%). The crude product was used without further purification.

7-Hydroxy-8-(2-phosphoethyl)-2-oxo-2H-1-benzopyran (4a, 6-PEHC): POCl₃ (46 mg, 0.31 mmol) and triethylamine (60 mg, 0.62 mmol) were dissolved in THF (10 mL), then crude 7-methoxymethoxy-8-(2-hydroxyethyl)-2-oxo-2H-1-benzopyran 14 (15 mg, 0.06 mmol) dissolved in THF (5 mL) was added dropwise at 0 °C under Ar. The mixture was stirred for 1 h, and added 1 N NaHCO₃ aq. (10 mL) and stirred. After 1 h, the reaction mixture was filtrated and evaporated, then MeOH (10 mL) was added to the residue oil and stirred for 2 h at 40 °C. After evaporation, the residue was purified with silica gel with RP-HPLC, eluted with TEAA buffer (pH = 6.5) to yield 4a as a triethylammonium salt (8 mg, y. 34%). ¹H NMR (400 MHz, CD₃OD) δ 1.29 (t, 9H, J = 7.6 Hz), 2.98 (t, 2H, J = 6.8 Hz),3.15 (q, 6H, J = 7.6 Hz),4.09 (q, 2H, J = 6.8 Hz),6.16 (d, 1H, J = 9.5 Hz),6.70 (s, 1H),7.46 (s, 1H),7.84 (d, 1H, J = 9.5 Hz); ¹³C NMR (100 MHz, CD₃OD) δ 9.1, 32.2 (d, J = 8.0 Hz), 47.5, 65.2 (d, J = 5.0 Hz), 102.8, 112.1, 112.9, 125.0, 131.4, 146.3, 155.8, 161.3, 163.9; HRMS (ESI') m/z: 285.0163 (calcd for [M-H]⁻ (C₁₁H₁₀O₇P): 285.0164).

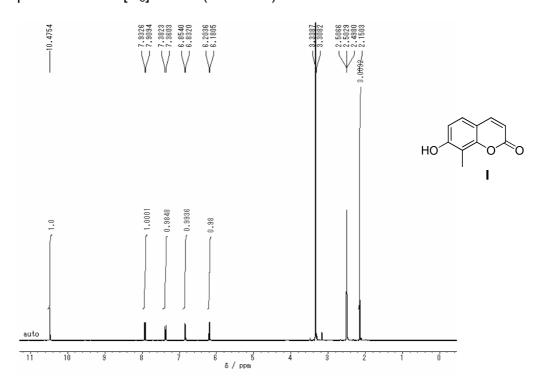
7-Hydroxy-6-(2-hydroxyethyl)-2-oxo-2H-1-benzopyran (**4b**, 6-HEHC): Crude 7-Methoxymethoxy-6-(2-hydroxypropyl)-2-oxo-2H-1-benzopyran **14** (15 mg, 0.06 mmol) was dissolved in CH_2Cl_2 (10 mL), and TMSBr (35 mg, 0.24 mmol) was added dropwise at 0 °C under Ar. The mixture was stirred for 1.5 h, then evaporated. The residue was purified with silica gel chromatography, eluted with 7% MeOH/CH₂Cl₂ to afford **4b** (5 mg, y. 35%). ¹H NMR (400 MHz, CD₃OD) δ 2.86 (t, 2H, J = 6.8 Hz),3.76 (t, 2H, J = 6.8 Hz),6.15(d, 1H, J = 9.5 Hz),6.71(s, 1H),7.36 (s, 1H),7.82 (d, 1H, J = 9.5 Hz); ¹³C NMR (67.5 MHz, CDCl₃) δ 34.3, 62.4, 102.9, 112.2, 112.9, 125.4, 131.2, 146.2, 155.8, 161.4, 163.9; HRMS (ESI⁺) m/z: 207.0661 (calcd for M⁺ (C₁₁H₁₁O₄): 207.0657).

7-Methoxymethoxy-8-(2-hydroxypropyl)-2-oxo-2H-1-benzopyran (15): 7-Methoxymethoxy-8-allyl-2-oxo-2H-1-benzopyran 9 (1.0 g, 4.06 mmol) was dissolved in THF (10 mL). Four mL of 1 M BH₃·THF (4.00 mmol) was added at 0 $^{\circ}$ C under Ar and stirred for 1 h at RT, then 2 M NaOH aq (2 mL) was added and stirred for 30 min at 0 $^{\circ}$ C. Then, 30% H₂O₂ aq. (1.7 mL) was added and stirred for 2 h at 0 $^{\circ}$ C. After evaporation of the THF, the residue was extracted with diethyl ether, washed with water and dried with brine and sodium sulfate. After evaporation, the residue was purified with silica gel chromatography, eluted with CH₂Cl₂/ethyl acetate (1:1) to af-

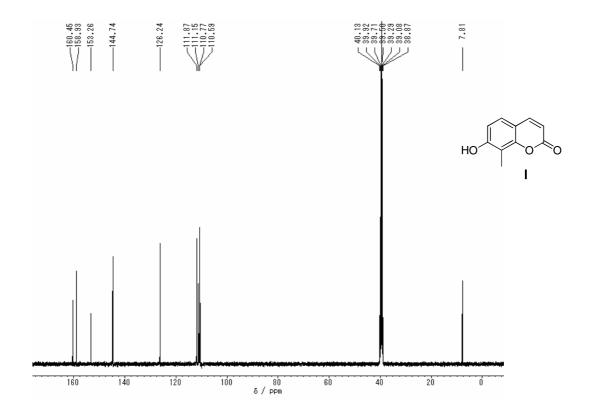
ford **15** (426 mg, y. 42%). ¹H NMR (400 MHz, CDCl₃) δ 1.89 (q, 2H, J = 6.8 Hz),2.99 (t, 2H, J = 7.1 Hz),3.50 (s, 3H),3.65 (t, 2H, J = 6.8 Hz),5.30 (s, 2H),6.30 (d, 1H, J = 9.4 Hz),7.09 (d, 1H, J = 8.8 Hz),7.31 (d, 1H, J = 8.8 Hz),7.66 (d, 1H, J = 9.4 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 10.8, 31.8, 56.4, 62.0, 94.5, 114.5, 110.5, 113.4, 113.6, 118.5, 126.4, 143.8, 153.1, 158.0, 161.2; HRMS (CI⁺) m/z: 265.1074 (calcd for $[M+H]^+$ (C₁₄H₁₇O₅): 265.1076).

7-Hydroxy-8-(2-phosphopropyl)-2-oxo-2H-1-benzopyran (**5a**, PPHC): POCl₃ (150 mg, 1.0 mmol) and triethylamine (200 mg, 2.0 mmol) were dissolved in THF (10 mL). 7-Methoxymethoxy-8-(2-hydroxyethyl)-2-oxo-2*H*-1-benzopyran **15** (50 mg, 0.20 mmol) dissolved in THF (5 mL) was added dropwise at 0 °C under Ar. The mixture was stirred for 1 h, and 1 M NaHCO₃ aq (10 mL) was added. The reaction mixture was stirred for 1 h at RT, then filtrated. After evaporation of the filtrate, MeOH (10 mL) was added to the residue oil and stirred for 2 h at 40 °C. After evaporation, the residue was purified with RP-HPLC, eluted with TEAA buffer (pH = 6.5) to yield **5a** as a triethylammonium salt (30 mg, yield 20%). ¹H NMR (400 MHz, CD₃OD) δ 1.31 (t, 9H, J = 7.6 Hz),1.93 (m, 2H),2.92 (t, 2H, J = 7.8 Hz),3.20 (q, 6H, J = 7.3 Hz),3.96 (q, 2H, J = 6.6 Hz), 6.17 (d, 1H, J = 9.6 Hz),6.80 (d, 1H, J = 8.6 Hz),7.31 (d, 1H, J = 8.6 Hz),7.83 (d, 1H, J = 9.6 Hz); ¹³C NMR (100 MHz, CD₃OD) δ 9.1, 20.4, 31.3 (d, J = 8.0 Hz), 47.5, 66.9 (d, J = 6.0 Hz), 111.9, 113.3, 113.7, 117.0, 128.0, 146.6, 155.0, 161.0, 163.9; HRMS (ESI') m/z: 299.0317 (calcd for [M-H] (C₁₂H₁₂O₇P): 299.0321); E. A.: C, 53.68; H, 6.91: N, 3.60 (calcd for C₁₈H₂₈NO₇P: C, 53.86; H, 7.03; N, 3.49).

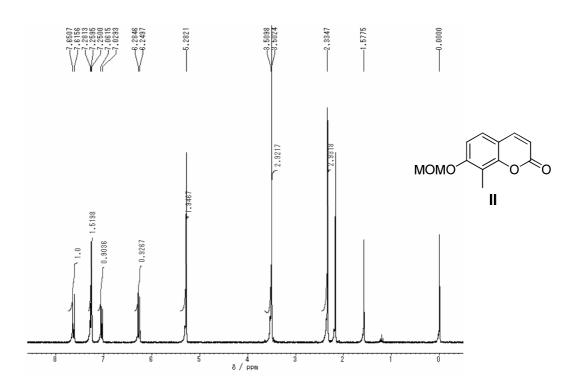
7-Hydroxy-8-(2-hydroxypropyl)-2-oxo-2H-1-benzopyran (**5b**, HPHC): 7-Methoxymethoxy-8-(2-hydroxypropyl)-2-oxo-2H-1-benzopyran **15** (50 mg, 0.2 mmol) was dissolved in CH₂Cl₂ (15 mL). TMSBr (122 mg, 0.8 mmol) was added dropwise at 0 °C under Ar, then the mixture was stirred for 3 h. After evaporation, the residue was purified with silica gel chromatography, eluted with 7% MeOH/CH₂Cl₂ to afford **5b** (36 mg, y. 86%). ¹H NMR (400 MHz, CD₃OD) δ 1.83 (q, 2H, J = 6.8 Hz), 2.88 (t, 2H, J = 7.8 Hz), 3.61 (t, 2H, J = 6.8 Hz),6.17 (d, 1H, J = 9.6 Hz),6.81 (d, 1H, J = 8.6 Hz),7.31 (d, 1H, J = 8.6 Hz),7.84 (d, 1H, J = 9.6 Hz); ¹³C NMR (100 MHz, CD₃OD) δ 20.0, 32.8, 62.9, 111.8, 113.3, 113.6, 117.0, 127.9, 146.6, 154.9, 160.8, 164.0; HRMS (ESI⁺) m/z: 221.0828 (calcd for [M+H]⁺ (C₁₂H₁₃O₄): 221.0814).

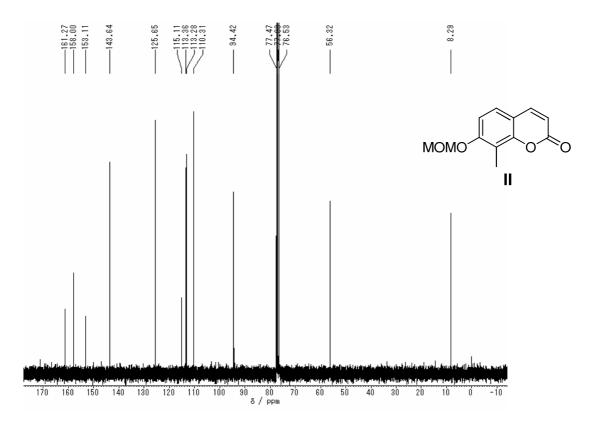

Reference

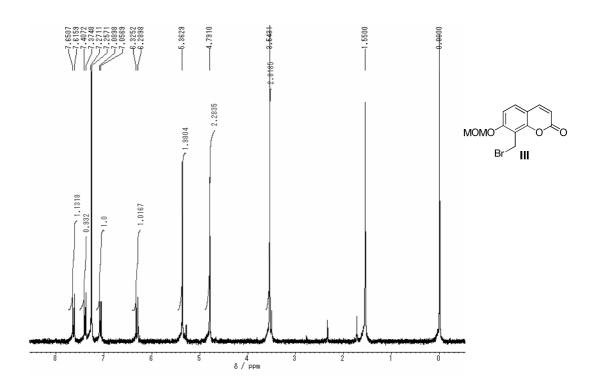
[S1] J. N. Demas, G. A. Crosby, J. Phys. Chem. 1971, 75, 991–1024.

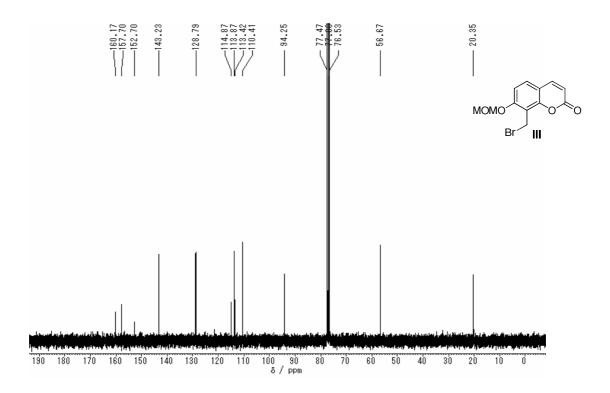

Scheme 1. Synthetic schemes of compound 1. a) 2-methylresorcinol, propiolic acid, H₂SO₄, 100 °C. b) MOMCI, diisopropylethylamine, DMF, 0 °C. c) NBS, AIBN, CCI₄, reflux. d) trimethylphosphite, 90 °C. e) TMSBr, CH₂CI₂, 0 °C.

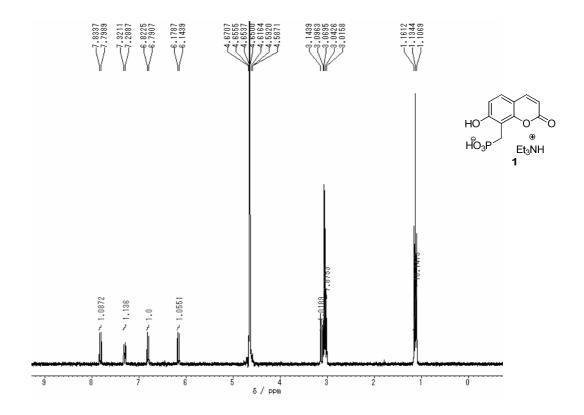
Scheme 2. Synthetic schemes of compound **3a–5b**. a) allyl bromide, K₂CO₃, acetone, reflux. b) *N*,*N*-diethylaniline, 220 °C. c) MOMCI, DIEA, DMF, 0 °C. d) OsO₄, THF/H₂O, RT. e) NaIO₄, RT. f) NaBH₄, THF, 0 °C. g) POCI₃, TEA, THF. h) MeOH, 40 °C. i) TMSBr, CH₂CI₂, 0 °C. j) BH₃·THF, THF, 0 °C. k) 2 M NaOH aq., H₂O₂, RT.

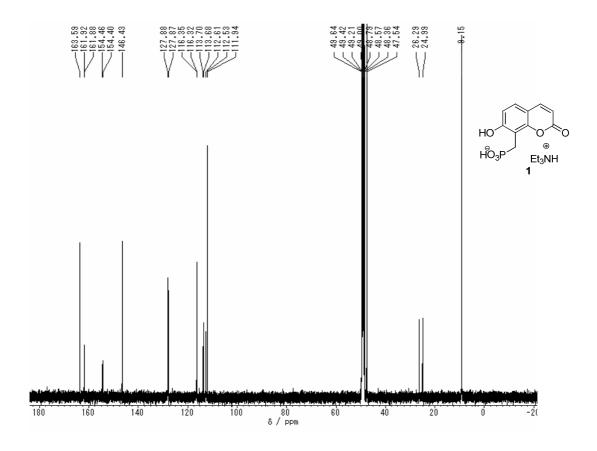

¹H NMR spectrum of I in [D₆]DMSO (400 MHz)

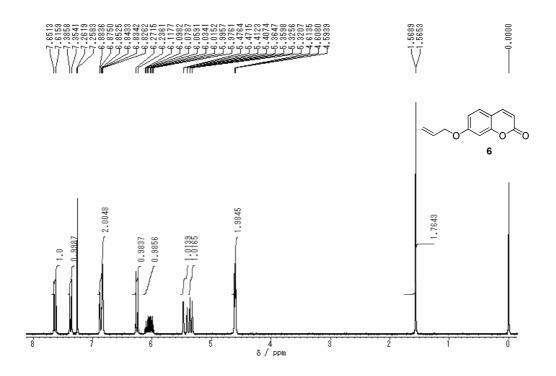

^{13}C NMR spectrum of I in [D₆]DMSO (100 MHz)

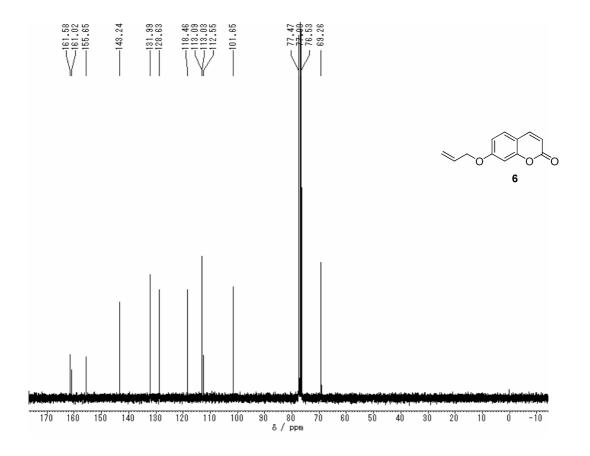

$^{1}\text{H NMR}$ spectrum of II in CDCl₃ (270 MHz)

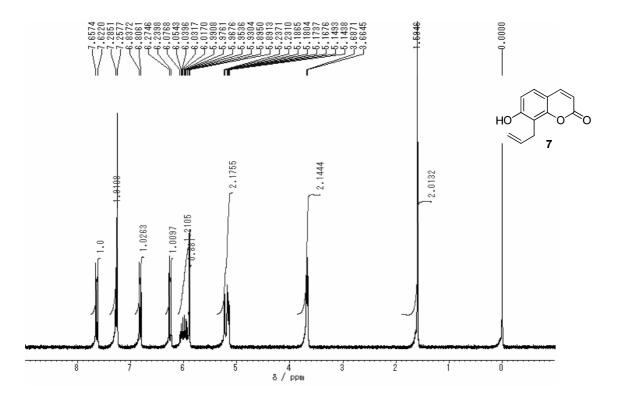

^{13}C NMR spectrum of II in CDCl3 (67.5 MHz)

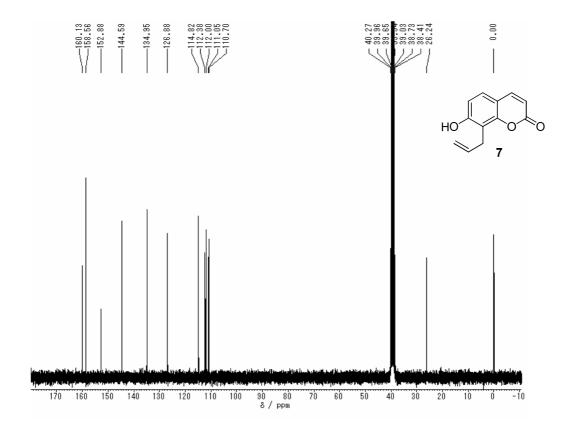

¹H NMR spectrum of III in CDCl₃ (270 MHz)

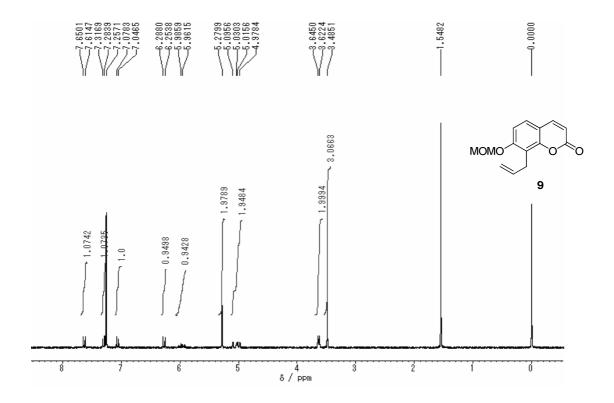

¹³C NMR spectrum of III in CDCl₃ (67.5 MHz)

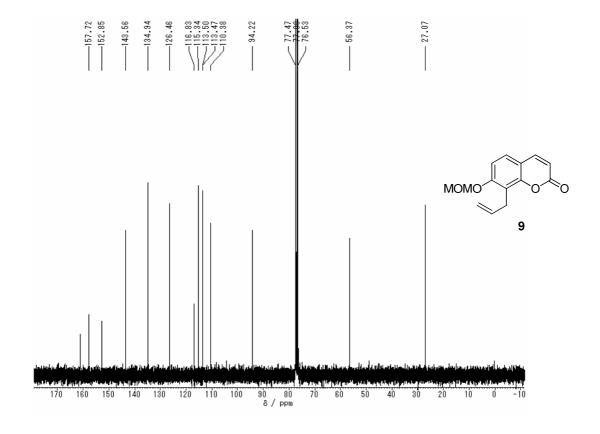

$^{1}\text{H NMR}$ spectrum of 1 in CD $_{3}\text{OD}$ (270 MHz)

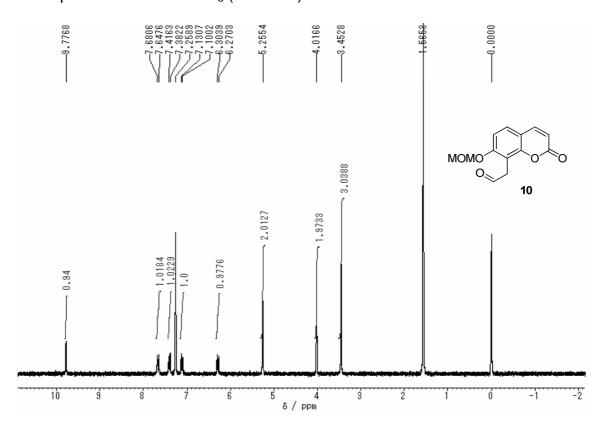

 ^{13}C NMR spectrum of 1 in CD₃OD (67.5 MHz)

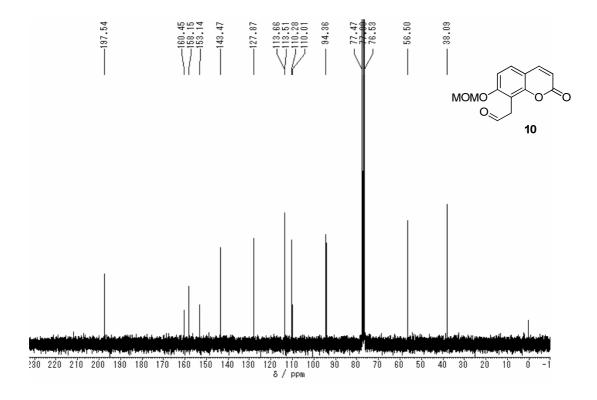

¹H NMR spectrum of 6 in CDCl₃ (270 MHz)

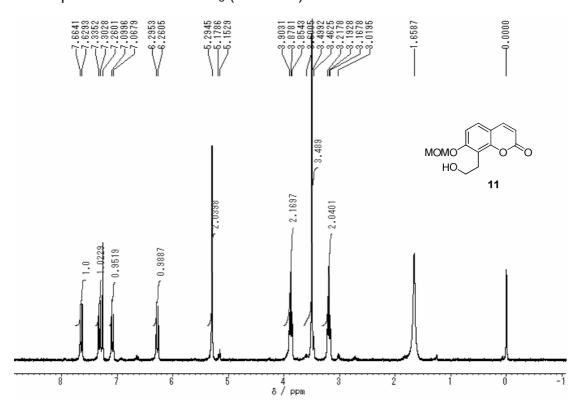

^{13}C NMR spectrum of 6 in CDCl₃ (67.5 MHz)

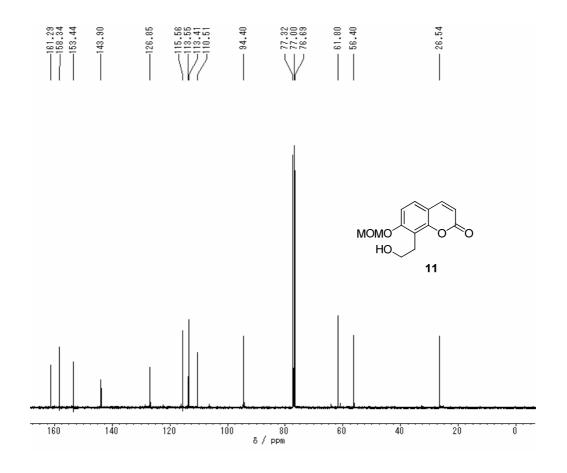

¹H NMR spectrum of 7 in CDCl₃ (270 MHz)

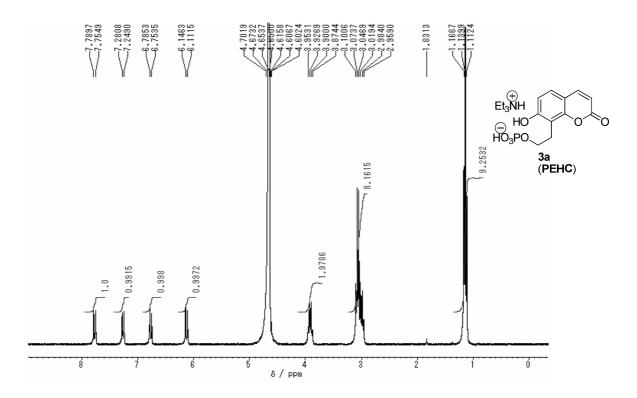

 ^{13}C NMR spectrum of 7 in DMSO- d_6 (67.5 MHz)

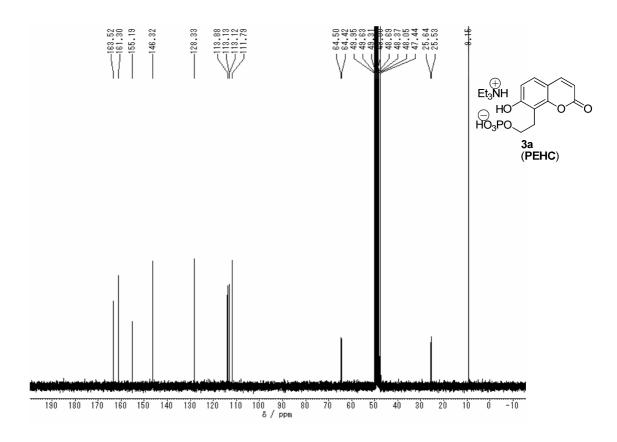

¹H NMR spectrum of 9 in CDCl₃ (270 MHz)

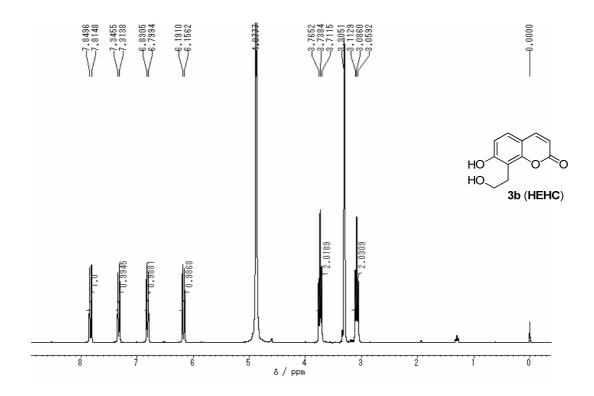

 ^{13}C NMR spectrum of 9 in CDCl3 (67.5 MHz)

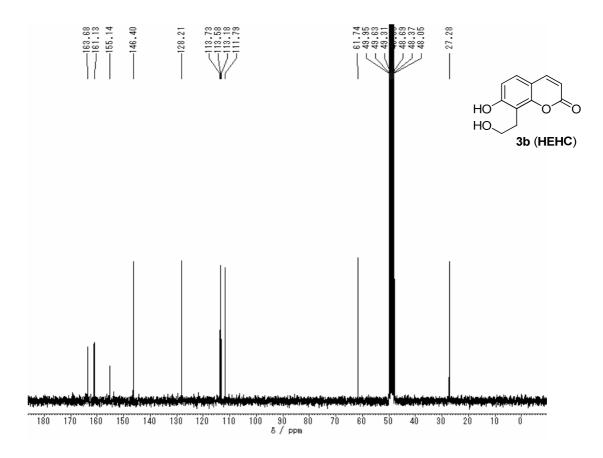

¹H NMR spectrum of 10 in CDCl₃ (270 MHz)

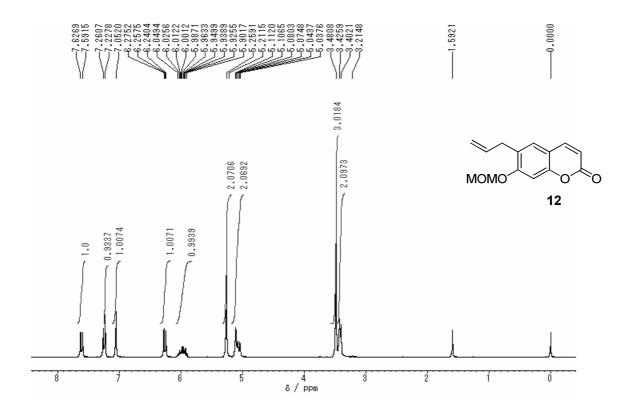

 ^{13}C NMR spectrum of 10 in CDCl₃ (67.5 MHz)

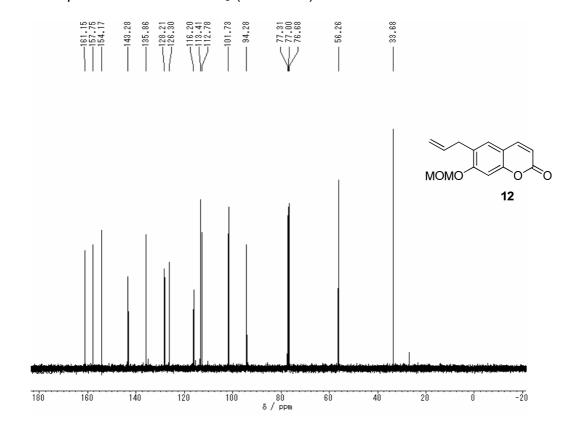

$^{1}\text{H NMR}$ spectrum of 11 in CDCI $_{3}$ (270 MHz)

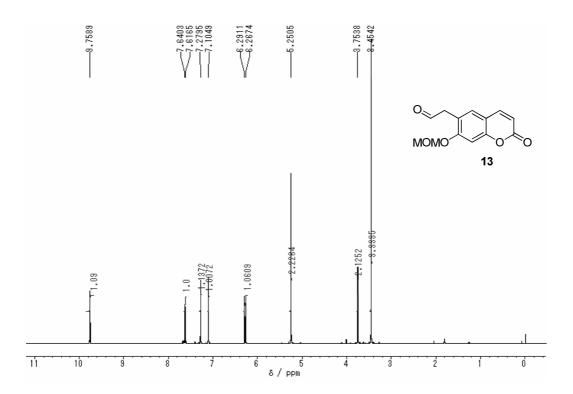

 ^{13}C NMR spectrum of 11 in CDCl $_3$ (67.5 MHz)

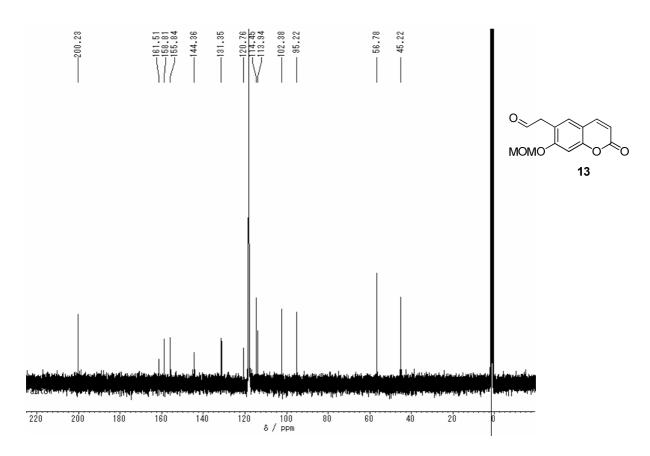

¹H NMR spectrum of 3a in D₂O (270 MHz)

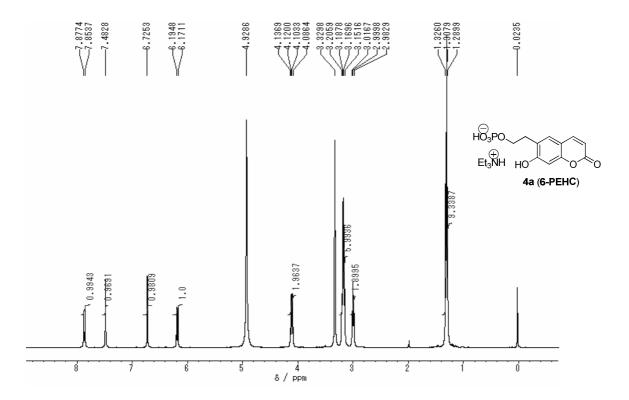

 ^{13}C NMR spectrum of 3a in CD₃OD (67.5 MHz)

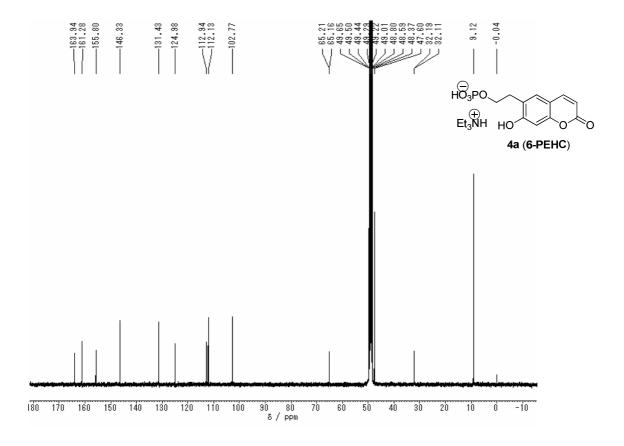

¹H NMR spectrum of 3b in CD₃OD (270 MHz)

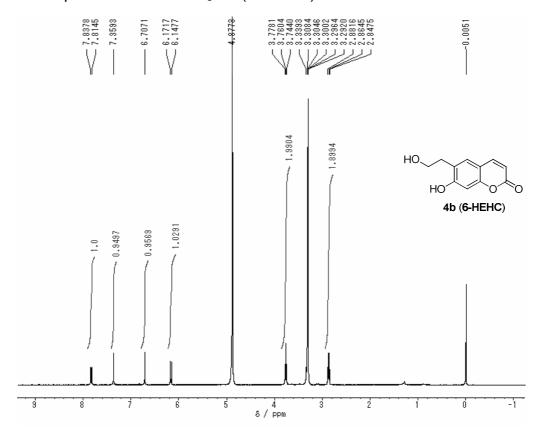

^{13}C NMR spectrum of 3b in CD₃OD (67.5 MHz)

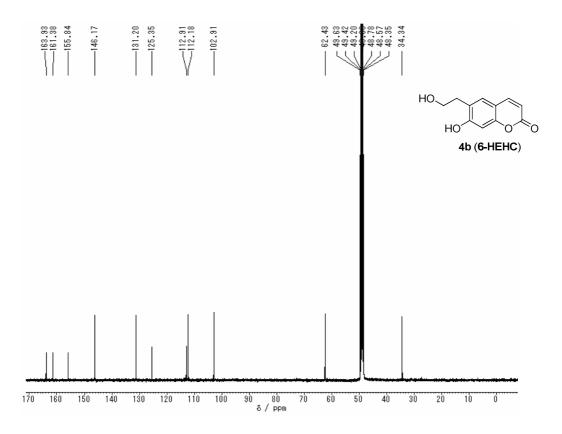

$^1 H$ NMR spectrum of 12 in CDCl $_3$ (270 MHz)

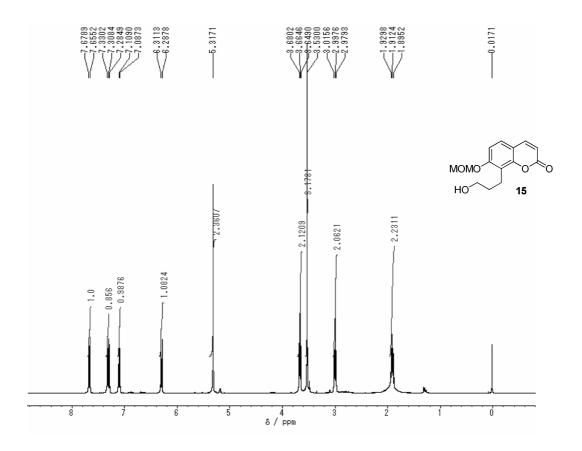

 ^{13}C NMR spectrum of 12 in CDCl₃ (67.5 MHz)

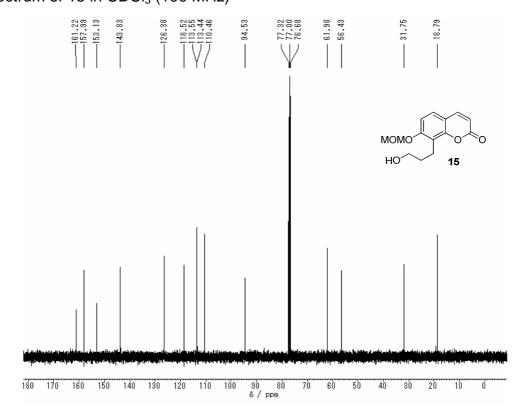

¹H NMR spectrum of 13 in CDCl₃ (270 MHz)

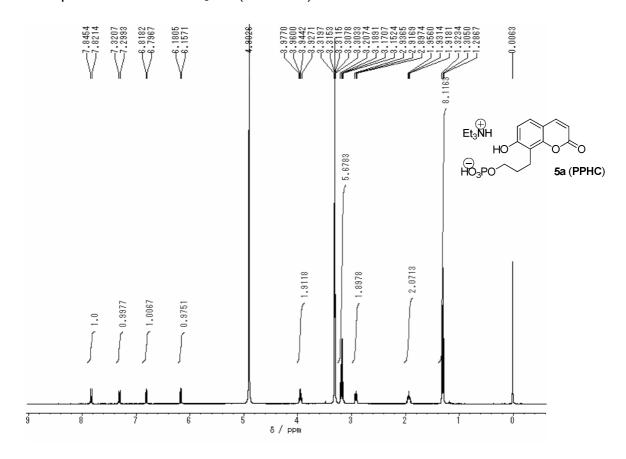

^{13}C NMR spectrum of 13 in CD₃CN (67.5 MHz)

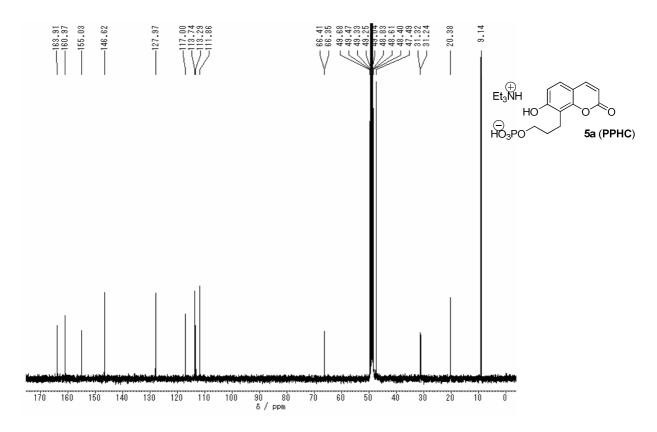

¹H NMR spectrum of 4a in CD₃OD (270 MHz)

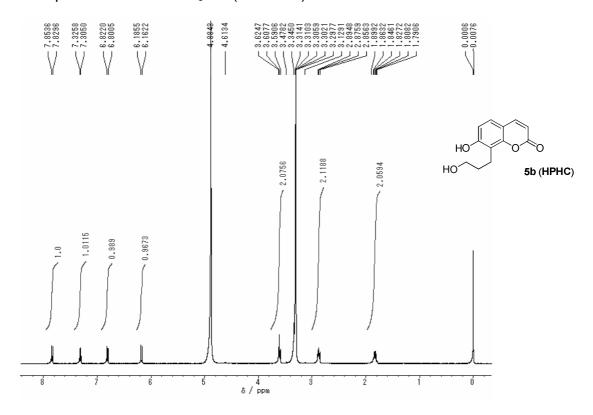

 ^{13}C NMR spectrum of 4a in CD₃OD (67.5 MHz)

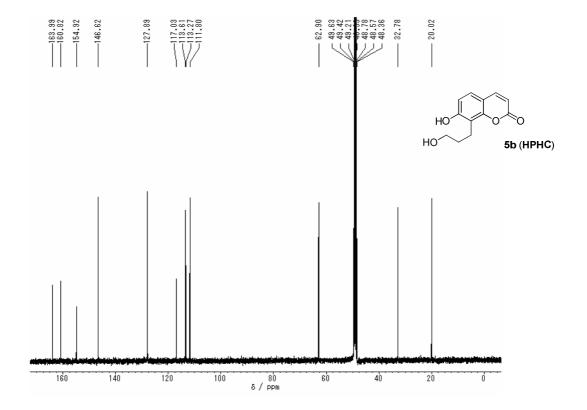

¹H NMR spectrum of 4b in CD₃OD (400 MHz)

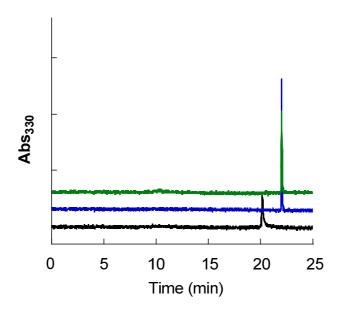

 ^{13}C NMR spectrum of 4b in CD₃OD (100 MHz)


¹H NMR spectrum of 15 in CDCl₃ (400 MHz)

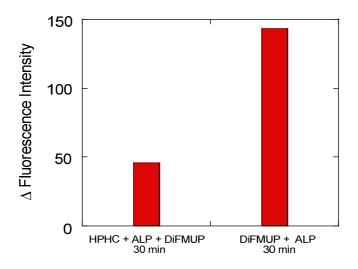

^{13}C NMR spectrum of 15 in CDCl₃ (100 MHz)


¹H NMR spectrum of 5a in CD₃OD (400 MHz)


 ^{13}C NMR spectrum of 5a in CD₃OD (100 MHz)



$^{1}\text{H NMR}$ spectrum of 5b in CD $_{3}\text{OD}$ (400 MHz)



^{13}C NMR spectrum of 5b in CD $_{\!3}\text{OD}$ (100 MHz)

Figure S1. Reversed-phase HPLC with absorbance detection of **3a** (lower), **3a** with ACP (middle), and **3b** (upper). Eluent: 100 mM triethylamine-acetic acid buffer (pH 6.5) / acetonitrile (gradient mode).

Figure S2. Inhibition assay of ALP with **3b**. Fluorescence increases of 10 μ M DiFMUP after incubation (30 min) with ALP (left) and with ALP preincubated with 1 μ M **3b**.